Objective/ strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number, 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is a useful skill for column addition later and for	$6+5=11$	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10 ? How many more do I add on now?

quick mental addition	Start with the bigger number and use the smaller number to make 10. Break the smaller number into two parts. Use ten frames or beads		
Represent \& use addition facts and related subtraction facts within 20	2 more than 5 is 7 2 less than 7 is 5		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'
Use the bar model to represent addition facts and the inverse	$\begin{aligned} & 3+4=7 \\ & 7-3=4 \\ & 7-4=3 \end{aligned}$	XXX XXXX 7 $\begin{aligned} & 3+4=7 \\ & 7-4=3 \\ & 7-3=4 \end{aligned}$	23 25 $?$ $\begin{aligned} & 23+25=48 \\ & ?-23=25 \\ & ?-25=23 \end{aligned}$
Use known number facts to make new number facts starting with Part part whole diagrams	Children explore ways of making numbers within 20	$\begin{gathered} \square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$
Using known facts to develop number fact patterns		Children draw representations of H, T and O	$3+4=7$ Leads to $30+40=70$ Leads to $300+400=700$

Add a two digit number and ones	$17+5=22$ Use ten frame to make ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part part whole and number line to model.	$17+5=22$ Explore related facts $\begin{aligned} & 5+17=22 \\ & 22-5=17 \\ & 22-17=5 \end{aligned}$
Add a 2 digit number and tens	Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add 2 digit numbers using informal methods	Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	Partition numbers to add ones and tens separately and then recombine $\begin{aligned} & 25+47 \\ & 20+5 \\ & 40+7 \end{aligned}$

			$\begin{aligned} & 20+40=60 \\ & 5+7=12 \\ & 60+12=72 \end{aligned}$
Add three 1digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation $\begin{aligned} & 5^{2}+4^{4}+4^{2}+8^{2} \\ & 4^{2}+b^{2}=15 \end{aligned}$	Combine the two numbers that make/ bridge ten then add on the third. $\begin{aligned} 4+7+6 & =10+7 \\ & =17 \end{aligned}$
Column Addition-no regrouping	Model using dienes or numicon Add together the ones first, then the tens.	Children draw representations of dienes to record number sentences	$\begin{aligned} & 33+24= \\ & 50+7=57 \end{aligned}$
Add two 2-digit numbers with regrouping			

	Exchange ten ones for a ten. Model with numicon and dienes	Children to show how ten ones are moved over to the tens column	$\begin{aligned} & 45+27= \\ & 40+20+12= \\ & 70+2 \end{aligned}$ Looking for ways to make 10.
Add numbers with up to 4 digits	Children continue to use dienes or to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	Draw representations of the dienes grid	Continue from previous work to carry hundreds as well as tens. Relate to money and measures.

Add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.			
			$\begin{array}{r} 81,059 \\ 33668 \\ 15,301 \\ +20,551 \\ \hline 120,579 \\ \hline 1111 \\ 23 \cdot 361 \\ 9.080 \\ 59.770 \\ +1 \cdot 300 \\ \hline 93.511 \\ 21 \end{array}$ Insert zero for place holders
SUBTRACTION Subtracting with objects	Physically removing and taking away objects from the whole	Q Q囚O Children draw objects that they are using and cross some out. A bar model can also be used	4-3 =$=4-3$4 3 $?$

Finding the difference	Finding the difference using objects Calcualte the difference bewteen 8 and 5	Children draw the objects they have used to calculate it. Or represent as a bar model.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the parts, what is the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model.
Make 10	Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 . $14-5=9$	Jump back 3 first, then another 4 . Use ten as the stopping point.	How many do we take off first to get to 10? How many left to take off? $16-8=$

			Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$
Bar model		00000000	$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$
			8 2
Partitioning to subtract without regrouping.	Use Dienes to show how to partition the number when subtracting without regrouping	Children draw representations of Dienes and cross off. $43-21=22$	43-22 $=21$

