Objective/ strategy	Concrete	Pictorial	Abstract
Doubling and near doubles	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling Double 4 is 8 Use practical activities to demonstrate near doubles Model doubling using dienes 4×2 is 8 Use practical activities to demonstrate near doubles	Draw pictures to show how to double numbers Double 4 is 8 \square \square \square \square \square Draw pictures of dienes to show doubling numbers	Partition a number and then double each part before recombining it back together Calculate near doubles mentally by doubling and adding/ subtracting 1

Counting in multiples		Children make representations to show counting in multiples. $\overbrace{0}^{2}, \frac{2}{2} \overbrace{0}^{2} \overbrace{\text { cio }}^{2} \frac{2}{2} \frac{2}{2}$ 	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$
Repeated addition	There are three equal groups of four	Children to represent repeated addition using drawings and a bar model	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$

Repeated addition using number lines	Number lines to show repeated addition	Represent this pictorially alongside a number line	Abstract number line showing 3 jumps of 4
Understandin g arrays	Use objects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc.	Draw representations of arrays to show understanding	$\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \end{aligned}$
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity	Use an array to write multiplication sentences and reinforce repeated addition $\begin{aligned} & 3 \times 5=15 \\ & 5 \times 3=15 \\ & 5+5+5= \end{aligned}$

Using the inverse		$\begin{aligned} & \text { 2/4 }=\square \\ & \square \times \square=\square \\ & \square \times \square=\square \\ & \square \div \square=\square \\ & \square \div \square=\square \end{aligned}$	$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.
Partitioning 2 digit numbers to multiply	Partition to multiply using dienes or numicon	Children to represent pictorially Children draw a number line to represent jumps e.g. $14 \times 8=10 \times 8+4 \times 8$	Children show steps they have taken using partitioning $\begin{array}{r} 4 \times 15 \\ 7 \\ 105 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40 \times 20 \times 60 \end{array}$
Formal method			Formal written method for short multiplication, then long multiplication

			Multiplication of decimals multiply as whole numbers, add back decimal places.
DIVISION			
Division as sharing	Sharing using a range of objects $10 \div 2$ I have 10 objects can you share them between 2 ?	Represent the sharing pictorially \% \% 丵 \% $8 \div 2=4$	$6 \div 2=3$3 3 Children should also be encouraged to use their times tables facts

Inverse	Children use arrays to show division sentences	Children draw own arrays to show division sentences and link to multiplication	Children are able to give division facts for multiplication facts $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$
Division as grouping	Use cubes, counters dienes to help understanding 24 divided into groups of $6=4$ $96 \div 3$ Repeated subtraction using Cuisenaire rods above a ruler 3 groups of 2	Children to represent repeated subtraction pictorially Continue to use bar modelling to aid understanding and link division to multiplication	Abstract number lines to represent the equal groups that have been subtracted

Division with remainders	Use of objects to divide into groups e.g. $13 \div 4=$	Children to represent objects pictorially There are 3 squares/ groups of 4 with 1 left over	Jump forward in equal jumps on a numberline and then see what is left over for a remainder
	Sharing using place value counters/dienes $42 \div 3=14$ 000000 	Children to represent pictorially	Children to write calculations to show the process of partitioning. Children to understand partitioning into 10x number and rest. Link to partitioning to multiply by a 2 digit number $42 \div 3=$ $30 \div 3=10$ $12 \div 3=4$

			$\begin{array}{r} 017.4 \\ 25 \mid 435.0 \\ 0 \downarrow \\ \hline 43 \\ 25 \downarrow \\ \hline 185 \\ 175 \\ \hline 0100 \\ 100 \\ \hline 000 \end{array}$

